China wholesaler China Supply High-Power 130mm 6nm 1.5 Kw 220V AC Servo Motor with Driver with high quality

Product Description

Product Description

 high-power 1.5KW 220V AC servo motor with driver

Details:

 

Model no. Rated Voltage(V) Output Power(w) Rated Torque(N.m) Rated Speed(RPM) Length(mm) Shaft DIA(mm)
130AEA10571-SH3 220 1000 4 2500 166 22
130AEA10015-SH3 220 950 6 1500 213 22
130AEA15571-SH3 220 1500 6 2500 179 22
130AEA20571-SH3 220 2000 7.7 2500 192 22
130AEA15015-SH3 220 1500 10 1500 213 22
130AEA23015-SH3 220 2300 15 1500 241 22
130AEA26571-SH3 220 2600 10 2500 209 22
130AEA38571-SH3 220 3800 15 2500 231 22

 

 

Size of Motor:

Size of Driver:

 The function of AC servo motor driver.

 

The input power Single phase or 3 phase AC220V -15~+10% 50/60Hz
environment temperature Using: 0~55 Storage: -20~80
humidity Below 90% RH No dewing
vibration Belown0.5G(4.9m/S2),10-60 no continue running

Control mode

1 Torque mode (internal or external)
2 speed mode (internal or external)
3 Position mode (internal orexternal)
4 Position/velocity model
5 Position/torque model

6 Speed/torque model

Control input

servo enables,alarm reset,

Forward driving is prohibited,

Reverse driving is prohibited ,

External CHINAMFG torque is limited ,

external reverse torque is limited,

Emergency stop,

Zero speed clamp ,

1 Internal speed command option 1,

2 Internal speed command option 2

3 Internal speed command option 3,

1 The internal torque command option 1

2 The internal torque command option 2

Control mode switch,

Gain switch,

1 Electronic gear molecular option 1,

2 Electronic gear molecular option 2,Instructions for,

Position deviation to clear,

Pulse input is prohibited,

Proportional control,

The CHINAMFG return to trigger,

The CHINAMFG return reference point.

1 Internal location option 1,

2 Internal location option 2,

Trigger internal position command,

Suspend internal position command

Control the output

Alarm detection,

Servo ready,

Emergency stop checked out,

Positioning to complete,

Speed to reach,

Reach the predetermined torque,

Zero speed detection,

Servo motor current,

Electromagnetic brake,

The CHINAMFG return to complete,

Located close to,

torque limit,

speed limit,

Tracking arrive torque command

The encoder feedback 2500p/r,15 line increment model, differential output
Communication mode RS-232 OR RS-485
Display and operation 1.five LED display 2.Four buttons
Braking way Through the internal/external braking resistance braking energy
Cooling way Air cooled (heat transfer film, the strong cold wind fan)
Power range ≤7.5KW

Installation environment conditions
1.Working environment: 0 ~ and ;working environment: less than 80% (no condensation)
2.Storage environment temperature:- ; Storage environment humidity: 80% of the (no condensation)
3.Vibration: Below 0.5 G
4.Well ventilated, less moisture and dust place

5.No corrosive, flash gas, oil and gas, cuttingfluid, iron powder and so on environment
6.No moisture and direct sunlight place

 

Installation method
1.Level installation:to avoid liquids such as water, oil from motor wire end into the motor internal, please will cable outlet inbelow
2.Vertical installation: if the motor shaft and the installation with reduction unit, must pay attention to and prevent reducer in mark through the motor shaft into the motor internal
3.The motor shaft out quantitymust be thoroughly, if insufficient out to motor sports generates vibration
4.Installation and remove the motor, please do not use hammer knock motor, otherwise easy to cause damage to themotor shaft and encoder

 

The motor direction of rotation
Looking from the motor load on the motor shaft and counterclockwise (CCW) for the forward, clockwise (the CW) as the reverse.

 

Packaging & Shipping

 

 

Our Services

 

 

Certifications

 

 

Company Information

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

What maintenance practices are recommended for ensuring the longevity of servo motors?

Maintaining servo motors properly is crucial to ensure their longevity and reliable performance. Here are some recommended maintenance practices:

1. Regular Cleaning:

Regularly clean the servo motor to remove dust, debris, and other contaminants that can affect its performance. Use a soft brush or compressed air to clean the motor’s exterior and ventilation ports. Avoid using excessive force or liquid cleaners that could damage the motor.

2. Lubrication:

Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the motor. Lubricate the motor’s bearings, gears, and other moving parts as per the specified schedule. Proper lubrication reduces friction, minimizes wear, and helps maintain optimal performance.

3. Inspections:

Regularly inspect the servo motor for signs of wear, damage, or loose connections. Check for any unusual noises, vibrations, or overheating during operation, as these can indicate potential issues. If any abnormalities are detected, consult the manufacturer’s documentation or seek professional assistance for further evaluation and repair.

4. Electrical Connections:

Ensure that all electrical connections to the servo motor, such as power cables and signal wires, are secure and properly insulated. Loose or damaged connections can lead to electrical problems, voltage fluctuations, or signal interference, which can affect the motor’s performance and longevity.

5. Environmental Considerations:

Take into account the operating environment of the servo motor. Ensure that the motor is protected from excessive moisture, dust, extreme temperatures, and corrosive substances. If necessary, use appropriate enclosures or protective measures to safeguard the motor from adverse environmental conditions.

6. Software and Firmware Updates:

Stay updated with the latest software and firmware releases provided by the servo motor manufacturer. These updates often include bug fixes, performance enhancements, and new features that can improve the motor’s functionality and reliability. Follow the manufacturer’s instructions for safely updating the motor’s software or firmware.

7. Training and Documentation:

Ensure that personnel responsible for the maintenance of servo motors are properly trained and familiar with the manufacturer’s guidelines and documentation. This includes understanding recommended maintenance procedures, safety precautions, and troubleshooting techniques. Regular training and access to up-to-date documentation are essential for effective servo motor maintenance.

8. Professional Servicing:

If a servo motor requires complex repairs or servicing beyond regular maintenance, it is advisable to consult a qualified technician or contact the manufacturer’s service center. Attempting to repair or modify the motor without proper expertise can lead to further damage or safety hazards.

By following these maintenance practices, servo motors can operate optimally and have an extended lifespan. Regular cleaning, lubrication, inspections, secure electrical connections, environmental considerations, software updates, training, and professional servicing all contribute to ensuring the longevity and reliable performance of servo motors.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

In which industries are servo motors commonly used, and what applications do they serve?

Servo motors are widely used across various industries due to their precise control capabilities and ability to deliver high torque at different speeds. Here are some industries where servo motors are commonly employed, along with their applications:

1. Robotics:

Servo motors are extensively used in robotics to control the movement of robotic limbs and joints. They enable precise positioning and accurate control, allowing robots to perform tasks with high accuracy and repeatability. Servo motors are also employed in humanoid robots, industrial manipulators, and collaborative robots (cobots).

2. Manufacturing and Automation:

In manufacturing and automation industries, servo motors are used in various applications such as conveyor systems, pick-and-place machines, packaging equipment, and assembly lines. Servo motors provide precise control over the movement of components, ensuring accurate positioning, fast response times, and high throughput.

3. CNC Machining:

Servo motors play a vital role in computer numerical control (CNC) machines, where they control the movement of axes (e.g., X, Y, and Z). These motors enable precise and smooth motion, allowing CNC machines to accurately shape and cut materials such as metal, wood, and plastics. Servo motors are also used in CNC routers, milling machines, lathes, and laser cutting equipment.

4. Aerospace and Aviation:

Servo motors find applications in the aerospace and aviation industries, particularly in flight control systems. They are used to control the movement of aircraft surfaces, such as ailerons, elevators, rudders, and flaps. Servo motors ensure precise and responsive control, contributing to the stability and maneuverability of aircraft.

5. Medical Devices:

In the medical field, servo motors are used in various devices and equipment. They are employed in robotic surgery systems, prosthetics, exoskeletons, infusion pumps, diagnostic equipment, and laboratory automation. Servo motors enable precise and controlled movements required for surgical procedures, rehabilitation, and diagnostic tests.

6. Automotive:

Servo motors have several applications in the automotive industry. They are used in electric power steering systems, throttle control, braking systems, and active suspension systems. Servo motors provide accurate control over steering, acceleration, and braking, enhancing vehicle safety and performance.

7. Entertainment and Motion Control:

Servo motors are widely used in the entertainment industry for animatronics, special effects, and motion control systems. They enable realistic movements of animatronic characters, robotic props, and camera rigs in film, television, and theme park attractions. Servo motors also find applications in motion simulators, gaming peripherals, and virtual reality systems.

In addition to these industries, servo motors are utilized in various other fields, including industrial automation, renewable energy systems, textile machinery, printing and packaging, and scientific research.

Overall, servo motors are versatile components that find widespread use in industries requiring precise motion control, accurate positioning, and high torque output. Their applications span across robotics, manufacturing, CNC machining, aerospace, medical devices, automotive, entertainment, and numerous other sectors.

China wholesaler China Supply High-Power 130mm 6nm 1.5 Kw 220V AC Servo Motor with Driver   with high quality China wholesaler China Supply High-Power 130mm 6nm 1.5 Kw 220V AC Servo Motor with Driver   with high quality
editor by CX 2024-05-16