China wholesaler 110BS0410-15 Large Torque Reduction Motor BLDC Motor Power 48V 1500W 1500r Brushless DC Motor with Encoder, Used for Agv Mobile Field Robot supplier

Product Description

110BS571-15

Product Overviews

 

 What is a Brushless DC motor (BLDC)?

A brushless DC motor (known as BLDC) is a permanent magnet synchronous electric motor which is driven by direct current (DC) electricity and it accomplishes electronically controlled commutation system (commutation is the process of producing rotational torque in the motor by changing phase currents through it at appropriate times) instead of a mechanically commutation system. BLDC motors are also referred as trapezoidal permanent magnet motors.

 

It has no mechanical commutator and associated problems

High efficiency due to the use of permanent magnet rotor

High speed of operation even in loaded and unloaded conditions due to the absence of brushes that limits the speed

Smaller motor geometry and lighter in weight than both brushed type DC and induction AC motors

Long life as no inspection and maintenance is required for commutator system

Higher dynamic response due to low inertia and carrying windings in the stator

Less electromagnetic interference

Quite operation (or low noise) due to absence of brushes

 

a. High Torque to inertia ratio&up to 25000Nm/kgm²

b. Fast dynamic response *time constant <20ms

c. Wide speed adjusting&feedback up to 1000:1

d. Steady speed precision up to 0.5%

e. High overload,2Mn/30s,3.5N.m/10s

f. Small volume and light

g. Silent,the lowest noise is only 45dB(A)

h. Protected with IP65,Class F insulation

Product Uses

  

Model   110BS571-15
Volt V 48V
Power W 1000W
Rated Torque N.m 6.3
Rated Speed r/min 1500
Rated Current A 40
Peak Torque N.m 16.6
Line Resistance Ω 0.6
Rotor Constant mH 0.28
Torque Constant Nm/A 0.17
Back EMF Constant v/kr/min 17.3
Rotor Inertia Kg.m2×10-6 418
Mechanical Time Constant ms 0.56
Electrical Time Constant ms 0.8
Encoder ppr 2500
Weight KG 8

Brushless dc servo motor Diemsion

 

Color Red Green Gray Yellow Brown Bule Orange
Output 5V A B C U V W
Color Black White/Green White/Gray White/Yellow White/Brown White/Bule White/Orange
Output 0V A- B- C- U- V- W-

 

Encoder Infronation

 

high torque brushless motor with encoder 48v 1000w brushless dc servo motor

Related Products

 

Model Volt Power Rated speed Rated Current Rated Torque Peak Torque Encoder
Unit V W r/min A N.m N.m PPR
LK60BS5711-30 24 100 3000 5.4 0.318 0.95 2500
LK60BS5712-30 24 200 3000 10.4 0.63 1.89 2500
LK80BS5712-15 12 200 1500 22 1.27 3.8 2500
LK80BS5712-15 24 200 1500 9.4 1.27 3.8 2500
LK80BS0402-15 48 200 1500 4.7 1.27 3.8 2500
LK80BS5714-15 12 400 1500 40 2.55 7.65 2500
LK80BS5714-15 24 400 1500 21.3 2.55 7.65 2500
LK80BS0404-15 48 400 1500 10.6 2.55 7.65 2500
LK80BS5714-30 24 400 3000 18.8 1.27 3.8 2500
LK80BS0404-30 48 400 3000 9.4 1.27 3.8 2500
LK110BS5717-15 24 750 1500 44 4.7 17 2500
LK110BS0408-15 48 800 1500 22 5 17.9 2500
LK110BS5710-15 24 1000 1500 52 6.3 22 2500
LK110BS571-15 48 1000 1500 28 6.3 22 2500
LK110BS571-15 48 1500 1500 37.5 9.5 28 2500
LK110BS0420-25 48 2000 2500 55 9.6 28 2500
LK130BS5715-13 24 500 1300 27 3.18 9.1 2500
LK130BS571-15 48 1000 1500 28 6.3 22 2500
LK130BS571-15 48 1500 1500 37.5 9.5 28 2500
LK130BS0420-15 48 2000 1500 55 12.7 37 2500
LK130BS0430-15 48 3000 1500 83 19.1 57 2500
LK130BS0430-30 48 3000 3000 83 9.5 28 2500

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Function: Control
Product Name: BLDC Motor
Motor Type: Permanent BLDC Motor Servo Motor

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

Where can individuals find reliable resources for learning more about servo motors and their applications?

Individuals interested in learning more about servo motors and their applications can access a variety of reliable resources. These resources provide valuable information, technical knowledge, and practical insights. Here are some places where individuals can find reliable resources for expanding their understanding of servo motors:

1. Manufacturer Websites:

Leading servo motor manufacturers often provide detailed documentation, technical specifications, application notes, and white papers on their websites. These resources offer in-depth information about their products, technologies, and best practices for servo motor applications. Users can visit the websites of prominent manufacturers to access reliable and up-to-date information.

2. Industry Associations and Organizations:

Industry associations and organizations related to automation, robotics, or specific industries often offer educational materials and resources on servo motors. They may provide technical publications, webinars, seminars, and training programs focused on servo motor technology and applications. Examples of such organizations include the International Society of Automation (ISA), the Robotics Industries Association (RIA), and the Society of Automotive Engineers (SAE).

3. Books and Technical Publications:

Books dedicated to servo motor technology, control systems, and industrial automation can provide comprehensive knowledge on the subject. Some recommended titles include “Servo Motors and Industrial Control Theory” by Riazollah Firoozian, “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and Bill Drury, and “Servo Motors and Motion Control: An Introduction” by Albert F. Seabury. Technical publications and journals such as IEEE Transactions on Industrial Electronics and Control Engineering Practice also offer valuable insights and research findings.

4. Online Courses and Training Platforms:

Various online learning platforms offer courses and training programs focused on servo motors and their applications. Websites like Udemy, Coursera, and LinkedIn Learning provide access to video-based courses taught by industry experts. These courses cover topics such as servo motor fundamentals, motion control, programming, and troubleshooting. By enrolling in these courses, individuals can acquire structured knowledge and practical skills related to servo motors.

5. Technical Forums and Discussion Groups:

Participating in technical forums and discussion groups can be an effective way to learn from industry professionals and enthusiasts. Websites like Stack Exchange, Reddit, and engineering-focused forums host discussions on servo motors, where individuals can ask questions, share experiences, and gain insights from the community. It’s important to verify the credibility of the information shared in such forums and rely on responses from trusted contributors.

6. Trade Shows and Conferences:

Attending trade shows, exhibitions, and conferences related to automation, robotics, or specific industries can provide opportunities to learn about servo motors. These events often feature presentations, workshops, and demonstrations by industry experts and manufacturers. Participants can gain hands-on experience, interact with professionals, and stay updated with the latest advancements in servo motor technology.

By leveraging these reliable resources, individuals can deepen their knowledge and understanding of servo motors and their applications. It is advisable to consult multiple sources and cross-reference information to ensure a comprehensive understanding of the subject.

servo motor

What is the significance of closed-loop control in servo motor operation?

Closed-loop control plays a significant role in the operation of servo motors. It involves continuously monitoring and adjusting the motor’s behavior based on feedback from sensors. The significance of closed-loop control in servo motor operation can be understood through the following points:

1. Accuracy and Precision:

Closed-loop control allows servo motors to achieve high levels of accuracy and precision in positioning and motion control. The feedback sensors, such as encoders or resolvers, provide real-time information about the motor’s actual position. This feedback is compared with the desired position, and any deviations are used to adjust the motor’s behavior. By continuously correcting for errors, closed-loop control ensures that the motor accurately reaches and maintains the desired position, resulting in precise control over the motor’s movements.

2. Stability and Repeatability:

Closed-loop control enhances the stability and repeatability of servo motor operation. The feedback information enables the control system to make continuous adjustments to the motor’s inputs, such as voltage or current, in order to minimize position errors. This corrective action helps stabilize the motor’s behavior, reducing oscillations and overshoot. As a result, the motor’s movements become more consistent and repeatable, which is crucial in applications where the same motion needs to be replicated accurately multiple times.

3. Compensation for Disturbances:

One of the key advantages of closed-loop control is its ability to compensate for disturbances or variations that may occur during motor operation. External factors, such as friction, load changes, or variations in the operating environment, can affect the motor’s performance and position accuracy. By continuously monitoring the actual position, closed-loop control can detect and respond to these disturbances, making the necessary adjustments to maintain the desired position. This compensation capability ensures that the motor remains on track despite external influences, leading to more reliable and consistent operation.

4. Improved Response Time:

Closed-loop control significantly improves the response time of servo motors. The feedback sensors provide real-time information about the motor’s actual position, which allows the control system to quickly detect any deviations from the desired position. Based on this feedback, the control system can adjust the motor’s inputs promptly, allowing for rapid corrections and precise control over the motor’s movements. The fast response time of closed-loop control is crucial in applications where dynamic and agile motion control is required, such as robotics or high-speed automation processes.

5. Adaptability to Changing Conditions:

Servo motors with closed-loop control are adaptable to changing conditions. The feedback information allows the control system to dynamically adjust the motor’s behavior based on real-time changes in the operating environment or task requirements. For example, if the load on the motor changes, the control system can respond by adjusting the motor’s inputs to maintain the desired position and compensate for the new load conditions. This adaptability ensures that the motor can perform optimally under varying conditions, enhancing its versatility and applicability in different industrial settings.

In summary, closed-loop control is of significant importance in servo motor operation. It enables servo motors to achieve high levels of accuracy, stability, and repeatability in position and motion control. By continuously monitoring the motor’s actual position and making adjustments based on feedback, closed-loop control compensates for disturbances, enhances response time, and adapts to changing conditions. These capabilities make closed-loop control essential for achieving precise and reliable operation of servo motors in various industrial applications.

servo motor

What are the key advantages of using servo motors in industrial applications?

Servo motors offer several key advantages that make them highly beneficial for a wide range of industrial applications. Here are some of the main advantages of using servo motors:

1. Precise Positioning:

Servo motors excel at precise positioning control. They can accurately move to specific angles or positions with high repeatability. This level of precision is crucial in applications where accurate and consistent positioning is required, such as robotics, CNC machining, and assembly lines.

2. High Torque at Various Speeds:

Servo motors are designed to deliver high torque output across a range of speeds. They can generate significant torque even at low speeds, enabling efficient operation in applications that require both high torque and precise control, such as lifting heavy loads or performing intricate movements.

3. Fast Response Times:

Servo motors have fast response times, meaning they can quickly accelerate, decelerate, and change direction in response to control signals. This responsiveness is essential in applications where rapid and dynamic motion control is needed, such as industrial automation, robotics, and production line equipment.

4. Closed-Loop Control:

Servo motors operate in a closed-loop control system, where feedback from position sensors is continuously used to adjust the motor’s behavior. This feedback control mechanism enables accurate tracking of the desired position and compensates for any disturbances or variations that may occur during operation. It enhances the motor’s accuracy, stability, and performance.

5. Wide Range of Sizes and Power Ratings:

Servo motors are available in a wide range of sizes and power ratings, making them suitable for diverse industrial applications. Whether it’s a small motor for precision tasks or a large motor for heavy-duty operations, there are servo motor options to meet various requirements.

6. Energy Efficiency:

Servo motors are designed to be energy-efficient. They typically have high power density, which means they can deliver a significant amount of torque per unit of size and weight. This efficiency helps reduce power consumption, lowers operating costs, and contributes to a greener and more sustainable industrial environment.

7. Flexibility and Adaptability:

Due to their versatility, servo motors can be easily integrated into different systems and applications. They can be combined with various control systems, sensors, and communication protocols to provide seamless integration and compatibility with existing industrial setups. This flexibility allows for customized and scalable solutions tailored to specific industrial requirements.

8. Durability and Reliability:

Servo motors are known for their durability and reliability, even in demanding industrial environments. They are built to withstand harsh conditions such as high temperatures, vibrations, and dust. This robust construction ensures long-term operation and minimizes downtime, contributing to increased productivity and reduced maintenance costs.

In summary, the key advantages of using servo motors in industrial applications include precise positioning, high torque at various speeds, fast response times, closed-loop control for accuracy and stability, a wide range of sizes and power ratings, energy efficiency, flexibility, and durability. These advantages make servo motors highly valuable for industries that require precise motion control, such as robotics, manufacturing, automation, CNC machining, and many others.

China wholesaler 110BS0410-15 Large Torque Reduction Motor BLDC Motor Power 48V 1500W 1500r Brushless DC Motor with Encoder, Used for Agv Mobile Field Robot   supplier China wholesaler 110BS0410-15 Large Torque Reduction Motor BLDC Motor Power 48V 1500W 1500r Brushless DC Motor with Encoder, Used for Agv Mobile Field Robot   supplier
editor by CX 2023-12-19