China Professional Italy Phase 3 Phase AC Servo Motor 1004f 1005f 1007f 1008f 1010f 1013f 1315f 1320f 1325f 1330f vacuum pump for ac

Product Description

 

Product Description

Italy Phase 3 phase ac servo motor 1004f 1005f 1007f 1008f 1571f 1013f 1315f 1320f 1325f 1330f

Why need servo control system:
When using a hydraulic system, the power consumption is more than 75% of the whole injection system. Different pressures and flows are requireed during the process, including mold closing, injection, holding pressure and mold opending. When the flow and pressure requirements exceed the settings, the relief or proportional valve will be adjusted, resulting in a 40%-75% higher power consumption.

The servo control system advantages:

1. Ultra energy saving:
    Save up to 60% compared traditional injection molding machine(60%) fixed displacement
    depend on the different injection conditions, can save up to 80% at the most.
2. Low system temperature
    decrease system temparature by 5-10°C to save cooling costs.
3. Highly accurate repeatability
    result in accurate control of flow and pressure
4. Long pressure holding time: benifit to thick product manufacture
5. Good frequency response rate: up to 50 ms

Detailed Photos

 

Configurations

 

NVICKS standard configurations:

Pump displacement mL/r

Pressure
Mpa

Max Speed r/min

CHINAMFG pump Model

CHINAMFG servo driver

Phase Servo Motor

Pump Stand shaft Coupling

Pressure Sensor

Proportion Valve

Signal Coverting Board

32

14

2000

QT42-31.5

VFD110VL43A-J 11KW

1005F17.3 10KW

BTJ-01

Italy GEFRAN

03 small size

0-1A to 0-10V

40

14

2000

QT42-40

VFD150VL43B-J 15KW

1007F17.3 14KW

BTJ-01

Italy GEFRAN

03 small size

0-1A to 0-10V

50

14

2000

QT52-50

VFD185VL43B-J 18.5KW

1008F17.3 17.6KW

BTJ-02

Italy GEFRAN

03 small size

0-1A to 0-10V

63

14

2000

QT52-63

VFD220VL43B-J 22KW

1571F15.3 20KW

BTJ-02

Italy GEFRAN

03 small size

0-1A to 0-10V

80

14

2000

QT62-80

VFD300VL43B-J 30KW

1013F17.3 28.7KW

BTJ-06

Italy GEFRAN

06 Big size

0-1A to 0-10V

100

14

2000

QT62-100

VFD370VL43B-J 37KW

1315F15.3 29KW

BTJ-06

Italy GEFRAN

06 Big size

0-1A to 0-10V

125

14

2000

QT62-125

VFD450VL43B-J 45KW

1320F17.3 39.4KW

BTJ-07

Italy GEFRAN

06 Big size

0-1A to 0-10V

 

For bigger pressure requirements, pls contact us for the matched configurations!

Technical data

Product Parameters

 

Applications

Cooperation clients:

Our Advantages

1. Top Quality
Depend on 15 years experience at pumps design and manufacturing, we have a top quality compared with domestic and overseas manufacturers, all of our products are with 1 year warranty time.

2. Strict Quality Control System
We have the most strict quality control system, all of our products are 100% tested before shipment and each of them has 1 tracking code in order to make sure they are with good quality to our customers.

3. Advanced machinery equipment
All the machines are new CNC machines we imported from Germany and Japan in order to reach more higher demand at the products accuracy.

4. Strong Technical team
Our technical team all have more than 20 years experience at pumps design and engineering, our chief engineer has more than 40 years experience at pumps design. We have 1 15 persons research team, responsible for pumps improvement research and new products development.

5. Competitive Price
Because of good management, our price is more competitive than the original products, more reasonable than most of the domestic suppliers.

6. Fast Delivery time
We can ship small orders within 1 week, for big orders such as within 100 sets of servo systemsusually we can make shipment within 1 month.

7. Warranty Period
All of our products are within 1 year warranty period after the shipment from our factory.

8. Considerate Service
We can provide technical support at any time if our customers meet any issue during the using, we will provide solutions at the soonest time.

9. Long development strategy
We would like to establish a long time strategy cooperation relationship with our customers, to promote Albert brand together, support and train the potential customer to be our agent at each country and region all over the world.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Control
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 800/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

Are there advancements or trends in servo motor technology that users should be aware of?

Yes, there have been significant advancements and emerging trends in servo motor technology that users should be aware of. These developments aim to enhance performance, improve efficiency, and provide new capabilities. Here are some noteworthy advancements and trends in servo motor technology:

1. Higher Power Density:

Advancements in servo motor design and manufacturing techniques have led to higher power densities. This means that modern servo motors can deliver more power in a smaller and lighter package. Higher power density allows for more compact and efficient machine designs, particularly in applications with limited space or weight restrictions.

2. Improved Efficiency:

Efficiency is a crucial aspect of servo motor technology. Manufacturers are continuously striving to improve motor efficiency to minimize energy consumption and reduce operating costs. Advanced motor designs, optimized winding configurations, and the use of high-quality materials contribute to higher efficiency levels, resulting in energy savings and lower heat generation.

3. Integration of Electronics and Control:

Integration of electronics and control functions directly into servo motors is becoming increasingly common. This trend eliminates the need for external motor controllers or drives, simplifies wiring and installation, and reduces overall system complexity. Integrated servo motors often include features such as on-board motion control, communication interfaces, and safety features.

4. Digitalization and Connectivity:

Servo motor technology is embracing digitalization and connectivity trends. Many modern servo motors come equipped with digital interfaces, such as Ethernet or fieldbus protocols, enabling seamless integration with industrial communication networks. This connectivity allows for real-time monitoring, diagnostics, and remote control of servo motors, facilitating condition monitoring, predictive maintenance, and system optimization.

5. Advanced Feedback Systems:

Feedback systems play a critical role in servo motor performance. Recent advancements in feedback technology have resulted in more accurate and higher-resolution encoders, resolvers, and sensors. These advanced feedback systems provide precise position and velocity information, enabling improved motion control, better accuracy, and enhanced dynamic response in servo motor applications.

6. Smart and Adaptive Control Algorithms:

Servo motor control algorithms have evolved to include smart and adaptive features. These algorithms can adapt to changing load conditions, compensate for disturbances, and optimize motor performance based on real-time feedback. Smart control algorithms contribute to smoother operation, increased stability, and improved tracking accuracy in various applications.

7. Safety and Functional Safety:

Safety is a paramount concern in industrial automation. Servo motor technology has incorporated safety features and functional safety standards to ensure the protection of personnel and equipment. Safety-rated servo motors often include features such as safe torque off (STO) functionality, safe motion control, and compliance with safety standards like ISO 13849 and IEC 61508.

It’s important for users to stay informed about these advancements and trends in servo motor technology. By understanding the latest developments, users can make informed decisions when selecting and implementing servo motors, leading to improved performance, efficiency, and reliability in their applications.

servo motor

What is the significance of closed-loop control in servo motor operation?

Closed-loop control plays a significant role in the operation of servo motors. It involves continuously monitoring and adjusting the motor’s behavior based on feedback from sensors. The significance of closed-loop control in servo motor operation can be understood through the following points:

1. Accuracy and Precision:

Closed-loop control allows servo motors to achieve high levels of accuracy and precision in positioning and motion control. The feedback sensors, such as encoders or resolvers, provide real-time information about the motor’s actual position. This feedback is compared with the desired position, and any deviations are used to adjust the motor’s behavior. By continuously correcting for errors, closed-loop control ensures that the motor accurately reaches and maintains the desired position, resulting in precise control over the motor’s movements.

2. Stability and Repeatability:

Closed-loop control enhances the stability and repeatability of servo motor operation. The feedback information enables the control system to make continuous adjustments to the motor’s inputs, such as voltage or current, in order to minimize position errors. This corrective action helps stabilize the motor’s behavior, reducing oscillations and overshoot. As a result, the motor’s movements become more consistent and repeatable, which is crucial in applications where the same motion needs to be replicated accurately multiple times.

3. Compensation for Disturbances:

One of the key advantages of closed-loop control is its ability to compensate for disturbances or variations that may occur during motor operation. External factors, such as friction, load changes, or variations in the operating environment, can affect the motor’s performance and position accuracy. By continuously monitoring the actual position, closed-loop control can detect and respond to these disturbances, making the necessary adjustments to maintain the desired position. This compensation capability ensures that the motor remains on track despite external influences, leading to more reliable and consistent operation.

4. Improved Response Time:

Closed-loop control significantly improves the response time of servo motors. The feedback sensors provide real-time information about the motor’s actual position, which allows the control system to quickly detect any deviations from the desired position. Based on this feedback, the control system can adjust the motor’s inputs promptly, allowing for rapid corrections and precise control over the motor’s movements. The fast response time of closed-loop control is crucial in applications where dynamic and agile motion control is required, such as robotics or high-speed automation processes.

5. Adaptability to Changing Conditions:

Servo motors with closed-loop control are adaptable to changing conditions. The feedback information allows the control system to dynamically adjust the motor’s behavior based on real-time changes in the operating environment or task requirements. For example, if the load on the motor changes, the control system can respond by adjusting the motor’s inputs to maintain the desired position and compensate for the new load conditions. This adaptability ensures that the motor can perform optimally under varying conditions, enhancing its versatility and applicability in different industrial settings.

In summary, closed-loop control is of significant importance in servo motor operation. It enables servo motors to achieve high levels of accuracy, stability, and repeatability in position and motion control. By continuously monitoring the motor’s actual position and making adjustments based on feedback, closed-loop control compensates for disturbances, enhances response time, and adapts to changing conditions. These capabilities make closed-loop control essential for achieving precise and reliable operation of servo motors in various industrial applications.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China Professional Italy Phase 3 Phase AC Servo Motor 1004f 1005f 1007f 1008f 1010f 1013f 1315f 1320f 1325f 1330f   vacuum pump for ac	China Professional Italy Phase 3 Phase AC Servo Motor 1004f 1005f 1007f 1008f 1010f 1013f 1315f 1320f 1325f 1330f   vacuum pump for ac
editor by CX 2023-12-26