China high quality 110BS0410-15 Large Torque BLDC Motor Power 48V 1000W 1500W 1500r Brushless DC Motor with Encoder, Suitable for Agv Mobile Field Robot manufacturer

Product Description



Product Overviews


 What is a Brushless DC motor (BLDC)?

A brushless DC motor (known as BLDC) is a permanent magnet synchronous electric motor which is driven by direct current (DC) electricity and it accomplishes electronically controlled commutation system (commutation is the process of producing rotational torque in the motor by changing phase currents through it at appropriate times) instead of a mechanically commutation system. BLDC motors are also referred as trapezoidal permanent magnet motors.


It has no mechanical commutator and associated problems

High efficiency due to the use of permanent magnet rotor

High speed of operation even in loaded and unloaded conditions due to the absence of brushes that limits the speed

Smaller motor geometry and lighter in weight than both brushed type DC and induction AC motors

Long life as no inspection and maintenance is required for commutator system

Higher dynamic response due to low inertia and carrying windings in the stator

Less electromagnetic interference

Quite operation (or low noise) due to absence of brushes


a. High Torque to inertia ratio&up to 25000Nm/kgm²

b. Fast dynamic response *time constant <20ms

c. Wide speed adjusting&feedback up to 1000:1

d. Steady speed precision up to 0.5%

e. High overload,2Mn/30s,3.5N.m/10s

f. Small volume and light

g. Silent,the lowest noise is only 45dB(A)

h. Protected with IP65,Class F insulation

Product Uses


Model   110BS571-15
Volt V 48V
Power W 1000W
Rated Torque N.m 6.3
Rated Speed r/min 1500
Rated Current A 40
Peak Torque N.m 16.6
Line Resistance Ω 0.6
Rotor Constant mH 0.28
Torque Constant Nm/A 0.17
Back EMF Constant v/kr/min 17.3
Rotor Inertia Kg.m2×10-6 418
Mechanical Time Constant ms 0.56
Electrical Time Constant ms 0.8
Encoder ppr 2500
Weight KG 8

Brushless dc servo motor Diemsion


Color Red Green Gray Yellow Brown Bule Orange
Output 5V A B C U V W
Color Black White/Green White/Gray White/Yellow White/Brown White/Bule White/Orange
Output 0V A- B- C- U- V- W-


Encoder Infronation


high torque brushless motor with encoder 48v 1000w brushless dc servo motor

Related Products


Model Volt Power Rated speed Rated Current Rated Torque Peak Torque Encoder
Unit V W r/min A N.m N.m PPR
LK60BS5711-30 24 100 3000 5.4 0.318 0.95 2500
LK60BS5712-30 24 200 3000 10.4 0.63 1.89 2500
LK80BS5712-15 12 200 1500 22 1.27 3.8 2500
LK80BS5712-15 24 200 1500 9.4 1.27 3.8 2500
LK80BS0402-15 48 200 1500 4.7 1.27 3.8 2500
LK80BS5714-15 12 400 1500 40 2.55 7.65 2500
LK80BS5714-15 24 400 1500 21.3 2.55 7.65 2500
LK80BS0404-15 48 400 1500 10.6 2.55 7.65 2500
LK80BS5714-30 24 400 3000 18.8 1.27 3.8 2500
LK80BS0404-30 48 400 3000 9.4 1.27 3.8 2500
LK110BS5717-15 24 750 1500 44 4.7 17 2500
LK110BS0408-15 48 800 1500 22 5 17.9 2500
LK110BS5710-15 24 1000 1500 52 6.3 22 2500
LK110BS571-15 48 1000 1500 28 6.3 22 2500
LK110BS571-15 48 1500 1500 37.5 9.5 28 2500
LK110BS0420-25 48 2000 2500 55 9.6 28 2500
LK130BS5715-13 24 500 1300 27 3.18 9.1 2500
LK130BS571-15 48 1000 1500 28 6.3 22 2500
LK130BS571-15 48 1500 1500 37.5 9.5 28 2500
LK130BS0420-15 48 2000 1500 55 12.7 37 2500
LK130BS0430-15 48 3000 1500 83 19.1 57 2500
LK130BS0430-30 48 3000 3000 83 9.5 28 2500

Power Source: DC Motor
Function: Control
Product Name: BLDC Motor

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

What role does the controller play in the overall performance of a servo motor?

The controller plays a crucial role in the overall performance of a servo motor system. It is responsible for monitoring and regulating the motor’s operation to achieve the desired motion and maintain system stability. Let’s explore in detail the role of the controller in the performance of a servo motor:

1. Motion Control:

The controller is responsible for generating precise control signals that dictate the motor’s speed, torque, and position. It receives input commands from the user or higher-level control system and translates them into appropriate control signals for the servo motor. By accurately controlling the motor’s motion, the controller enables precise positioning, smooth acceleration and deceleration, and the ability to follow complex trajectories. The controller’s effectiveness in generating accurate and responsive control signals directly impacts the motor’s motion control capabilities.

2. Feedback Control:

The controller utilizes feedback from position sensors, such as encoders, to monitor the motor’s actual position, speed, and other parameters. It compares the desired motion profile with the actual motor behavior and continuously adjusts the control signals to minimize any deviations or errors. This closed-loop feedback control mechanism allows the controller to compensate for disturbances, variations in load conditions, and other factors that may affect the motor’s performance. By continuously monitoring and adjusting the control signals based on feedback, the controller helps maintain accurate and stable motor operation.

3. PID Control:

Many servo motor controllers employ Proportional-Integral-Derivative (PID) control algorithms to regulate the motor’s behavior. PID control calculates control signals based on the error between the desired setpoint and the actual motor response. The proportional term responds to the present error, the integral term accounts for accumulated past errors, and the derivative term considers the rate of change of the error. By tuning the PID parameters, the controller can achieve optimal performance in terms of response time, stability, and steady-state accuracy. Properly configured and tuned PID control greatly influences the servo motor’s ability to follow commands accurately and efficiently.

4. Trajectory Planning:

In applications requiring complex motion profiles or trajectories, the controller plays a vital role in trajectory planning. It determines the optimal path and speed profile for the motor to follow, taking into account constraints such as acceleration limits, jerk limits, and mechanical limitations. The controller generates the required control signals to achieve the desired trajectory, ensuring smooth and precise motion. Effective trajectory planning by the controller enhances the motor’s performance in applications that involve intricate or high-speed movements.

5. System Monitoring and Protection:

The controller monitors various parameters of the servo motor system, including temperature, current, voltage, and other diagnostic information. It incorporates protective measures to prevent damage or excessive stress on the motor. The controller can implement safety features such as overcurrent protection, over-temperature protection, and fault detection mechanisms. By actively monitoring and safeguarding the motor and the system, the controller helps prevent failures, prolongs the motor’s lifespan, and ensures safe and reliable operation.

6. Communication and Integration:

The controller facilitates communication and integration with other components or systems within the overall automation setup. It may support various communication protocols, such as Ethernet, CAN bus, or fieldbus protocols, enabling seamless integration with higher-level control systems, human-machine interfaces (HMIs), or other peripheral devices. The controller’s ability to efficiently exchange data and commands with other system components allows for coordinated and synchronized operation, enhancing the overall performance and functionality of the servo motor system.

In summary, the controller plays a vital role in the overall performance of a servo motor system. It enables precise motion control, utilizes feedback for closed-loop control, implements PID control algorithms, plans complex trajectories, monitors system parameters, and facilitates communication and integration. The controller’s capabilities and effectiveness directly impact the motor’s performance in terms of accuracy, responsiveness, stability, and overall system efficiency.

servo motor

How is the size of a servo motor determined based on application requirements?

The size of a servo motor is an important consideration when selecting a motor for a specific application. The size of the motor is determined based on various factors related to the application requirements. Let’s explore how the size of a servo motor is determined:

1. Torque Requirements:

One of the primary factors in determining the size of a servo motor is the torque requirements of the application. The motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. The required torque depends on factors such as the weight of the load, the distance from the motor’s axis of rotation, and any additional forces acting on the system. By analyzing the torque requirements, one can select a servo motor with an appropriate size and torque rating to meet the application’s needs.

2. Speed and Acceleration Requirements:

The desired speed and acceleration capabilities of the application also influence the size of the servo motor. Different applications have varying speed and acceleration requirements, and the motor needs to be capable of achieving the desired performance. Higher speeds and accelerations may require larger motors with more powerful components to handle the increased forces and stresses. By considering the required speed and acceleration, one can determine the size of the motor that can meet these demands.

3. Inertia and Load Inertia Ratio:

The inertia of the load and the inertia ratio between the load and the servo motor are important considerations in sizing the motor. Inertia refers to the resistance of an object to changes in its rotational motion. If the load has a high inertia, it requires a servo motor with sufficient size and torque to accelerate and decelerate the load effectively. The inertia ratio, which is the ratio of the load inertia to the motor inertia, affects the motor’s ability to control the load’s motion accurately. A proper balance between the load and motor inertia is necessary to achieve optimal performance and stability in the system.

4. Duty Cycle and Continuous Operation:

The duty cycle and continuous operation requirements of the application also impact the motor size selection. Duty cycle refers to the ratio of the motor’s operating time to the total cycle time. Applications with high-duty cycles or continuous operation may require larger motors that can handle sustained operation without overheating or performance degradation. It is important to consider the motor’s continuous torque rating and thermal characteristics to ensure it can operate reliably under the given duty cycle requirements.

5. Physical Space Constraints:

The physical space available for installing the servo motor is another factor to consider. The motor’s dimensions should fit within the available space, considering factors such as motor length, diameter, and any mounting requirements. It is essential to ensure that the chosen motor can be easily integrated into the system without interfering with other components or causing space constraints.

6. Weight Limitations:

The weight limitations of the application may influence the motor size selection. If there are weight restrictions, such as in mobile or lightweight applications, it is necessary to choose a servo motor that is compact and lightweight while still providing the required performance. Lighter servo motors can help optimize the overall weight and balance of the system.

7. Cost Considerations:

Cost is also a factor to consider when determining the size of a servo motor. Larger motors with higher torque and performance capabilities tend to be more expensive. It is important to strike a balance between the required performance and the cost constraints of the application. Analyzing the cost-effectiveness and overall value of the motor in relation to the application requirements is essential.

By considering these factors, one can determine the appropriate size of a servo motor that can meet the specific application requirements. It is advisable to consult with manufacturers or experts in the field to ensure the chosen motor size aligns with the application needs and provides optimal performance and reliability.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China high quality 110BS0410-15 Large Torque BLDC Motor Power 48V 1000W 1500W 1500r Brushless DC Motor with Encoder, Suitable for Agv Mobile Field Robot   manufacturer China high quality 110BS0410-15 Large Torque BLDC Motor Power 48V 1000W 1500W 1500r Brushless DC Motor with Encoder, Suitable for Agv Mobile Field Robot   manufacturer
editor by CX 2023-12-04